

Introducción

La tarjeta de desarrollo de Intesc AVANXE, ha sido diseñada para satisfacer las necesidades de estudiantes, investigadores y profesionistas que comienzan a trabajar con VHDL. Además, debido al número de recursos que contiene, ofrece una gran versatilidad para el desarrollo de aplicaciones embebidas para aquellos que ya tienen experiencia trabajando con FPGAs.

AVANXE cuenta con un FPGA Spartan 6 XC6SLX16 de Xilinx que, además de permitir el diseño de sistemas digitales combinacionales y secuenciales usando VHDL, permitirá al desarrollador crear aplicaciones en áreas como procesamiento de señales, control, instrumentación, arquitectura de computadoras, etc. Además, incluye un PSoC 3 CY8C3246 de Cypress precargado con un Bootloader, que le permitirá al desarrollador adquirir señales analógicas, diseñar sistemas usando tecnología CapSense o simplemente programarlo de acuerdo a los requerimientos y las necesidades del proyecto. La siguiente figura muestra el diagrama de blogues de AVANXE:

Voltaje

AVANXE cuenta con una fuente de voltaje conmutada. La fuente genera 3.3 y 1.2 Volts. Y su alimentación proviene de los 5 Volts que entrega el puerto USB. El encendido y apagado puede controlarse mediante el switch PWR SWITCH colocado junto al puerto USB de programación.

El voltaje de 3.3 Volts y la alimentación externa de 5 Volts pueden ser usadas

Manual de Referencia de AVANXE Rev F – 19 Abril de 2016

Especificaciones www.intesc.mx

para alimentar circuitos externos a través de los puertos de expansión P4 y P6.

La fuente de 1.2 Volts es usada para alimentar el núcleo del FPGA y no hay salida al exterior. Asimismo no se aconseja usar esta fuente para alimentar componentes que no son el FPGA.

Programación

El FPGA puede ser programado de dos formas diferentes: usando el programador USB de Intesc o a partir de un archivo almacenado en la memoria Flash SPI.

El programador USB usa el software <u>INTegra</u> para hacer la conexión y descargar el archivo .bit al FPGA. Cuando AVANXE es encendida, el FPGA es programado automáticamente por la memoria Flash SPI y el interruptor RESET FPGA permite que el FPGA se re-programe usando esta memoria sin necesidad de apagar o desconectar a AVANXE.

Oscilador

AVANXE cuenta con un oscilador de 50MHz soldado al pin **C10**. Este oscilador es la principal fuente de reloj de AVANXE y pueden usarse los los CTMs internos del Spartan 6 para incrementar o disminuir la frecuencia.

Flash SPI

AVANXE cuenta con una memoria MX25L6445EM2I de <u>Macronix International</u> de 64 Mbits que, además de almacenar el bitstream de programación del FPGA, puede ser usada para almacenar información que el usuario requiera. Es responsabilidad del usuario no editar el área donde el bitstream es almacenado. El bitstream de AVANXE para la memoria Flash tiene un tamaño de 1.21MB e INTegra siempre lo programa desde la primera localidad.

La siguiente tabla muestra las conexiones entre el FPGA y la memoria Flash:

NOMBRE	PIN FLASH	PIN FPGA
CS	1	ТЗ
SO	2	P10
SI	5	T10
SCLK	6	R11

RS232

Para facilitar la comunicación hacia la computadora, el programador de AVANXE, basado en un FT2232H de FTDI, incluye un convertidor USB/RS232 que es detectado en una PC como puerto COM. Esta interfaz es útil cuando se necesita comunicación con una Computadora Personal y la velocidad de transferencia no es crítica. De esta manera es posible conectarse con LabVIEW, JAVA, Matlab, C#, etc. y es capaz de transmitir hasta 12 MBAUDIOS.

La siguiente tabla resume el mapeo de pines del FPGA al RS232:

NOMBRE	PIN RS232	PIN FPGA
ТХ	38	N3
RX	39	N4
RTS	40	P1
CTS	41	N1
DTR	43	M4
DSR	44	M5
DCD	45	M3
RI	46	M2

Manual de Referencia de AVANXE Rev F – 19 Abril de 2016

Display de 7 Segmentos

PSoC

En AVANXE se han incluido 4 Displays de 7 segmentos de ánodo común. Los 4 Displays comparten el bus de datos y los ánodos están conectados a

transistores PNP para conmutar el encendido de cada Display. La siguiente tabla las conexiones entre el FPGA, los segmentos y los ánodos (a través de los transistores) de los 4 Displays:

NOMBRE	PIN FPGA
А	N9
В	L10
С	M7
D	N6
E	L7
F	P8
G	P7
P.D.	N8
ANO	M11
AN1	P11
AN2	M10
AN3	M9

pines, P4.

Una de las principales aplicaciones que tiene el PSoC para AVANXE es la conversión Analógica Digital de 0 a 5 Volts y Digital Analógica de 0 a 4.08 Volts.

La siguiente tabla muestra las conexiones entre el PSoC y el puerto P4:

NOMBRE	P13	PIN PSoC
PSoC1	20	P0[0]
PSoC2	19	P0[1]
PSoC3	18	P0[2]
PSoC4	17	P0[3]
PSoC5	16	P0[4]
PSoC6	15	P0[5]
PSoC7	14	P0[6]
PSoC8	13	P0[7]
GND	3	-
3.3V	2	-
5V	1	-

El PSoC y el FPGA se comunican a través de 6 pines: 4 para realizar comunicación a través de una interfaz SPI, 1 pin de interrupción* y 1 bit conectado a un LED como salida digital (No conectado al FPGA). La siguiente tabla muestra la conexión con el FPGA.

NOMBRE	PIN PSoC	PIN FPGA
CS	P2[4]	N16
SCK	P2[3]	K12
SDO	P2[6]	N14
SDI	P2[7]	M16
INT	P15[1]	P16

Manual de Referencia de AVANXE Rev F – 19 Abril de 2016

Para comunicarse al exterior, se han colocado 8 pines del PSoC hacia el puerto de expansión de 20

Cypress

Creator y es completamente gratuito.

AVANXE cuenta con un PSoC (Programmable System on Chip) de

precargado con un Bootloader para ser re-programado a través del puerto USB J3. El software de programación es llamado PSOC

CY8C3246PVI-147

Especificaciones www.intesc.mx

NOMBRE	PIN PSoC	PIN FPGA
LED	P1[6]	N.C.

*Aunque los 5 pines han sido colocados para realizar comunicación SPI + 1 un bit de interrupción, el usuario puede reconfigurar el PSoC de acuerdo a sus necesidades.

Bootloader

El switch S10 es un reset para el PSoC y en conjunto con el switch S11 carga el Bootloader de acuerdo a la siguiente secuencia:

- **1**. Presionar S10 y mantener presionado
- 2. Presionar S11 mientras se tiene presionado S10
- 3. Mantener presionado al menos 1 segundo tanto S10 como S11
- 4. Soltar S10
- 5. Soltar S11

La secuencia anterior provocará que la PC reconozca e instale el Bootloader (si no ha sido instalado previamente), dejando listo el Hardware para ser reprogramado. Para programar el PSoC se debe usar la aplicación Bootloader Host de Cypress, que se instala junto con el PSoC Creator.

SDRAM

AVANXE cuenta con una memoria SDRAM, ubicada en la cara inferior del circuito impreso, **MT48LC4M16** de <u>Micron</u> de 4Megas x 16Bits, o una equivalente, y puede puede operar a una frecuencia máxima de 167MHz.

La siguiente tabla muestra la conexión entre el FPGA y memoria:

NOMBRE	PIN SDRAM	PIN FPGA
DO	2	B2
D1	4	F6
D2	5	C1
D3	7	C3

D4	8	D3
NOMBRE	PIN SDRAM	PIN FPGA
D5	10	E4
D6	11	E3
D7	13	F5
D8	42	F1
D9	44	F2
D10	45	E1
D11	47	E2
D12	48	D1
D13	50	C2
D14	51	B1
D15	53	B3
AO	23	КЗ
A1	24	L5
A2	25	L3
A3	26	L4
A4	29	M1
A5	30	L1
A6	31	K2
A7	32	K1
A8	33	J1
A9	34	J3
A10	22	K5
A11	35	H1
BAO	20	J4
BA1	21	K6
CS	19	J6
WE	16	F4

Manual de Referencia de AVANXE Rev F – 19 Abril de 2016

NOMBRE	PIN SDRAM	PIN FPGA
CAS	17	H5
RAS	18	H3
CLKE	37	G1
CLK	38	H4
DQML	15	F3
DQMH	39	G3

LCD 2x16

AVANXE incluye una LCD de 2x16 caracteres SPI <u>NHD-</u> <u>C0216CZ-FSW-FBW-</u> <u>3V3</u> de Newhaven Technology. La librería

para usar esta LCD

puede ser descargada de nuestro sitio web en el área de soporte <u>www.intesc.mx/soporte</u>

La siguiente tabla muestra las conexiones entre el FPGA y la LCD.

PIN LCD	PIN FPGA
RST	P15
RS	R16
CSB	R15
SCL	T15
SI	R14

*NOTA. LAS LEYENDAS EN EL CIRCUITO IMPRESO DE LOS PINES QUE CORRESPONDEN A LA LCD SON INCORRECTAS. LOS PINES CORRETOS SON LOS QUE APARECEN EN LA TABLA ANTERIOR.

USB HOST

Para lograr que AVANXE sea multidiciplinaria, ha sido incluido un USB Host VNC2-32L1B <u>Vinculum II</u> de FTDI de dos canales, preconfigurados para recibir información de dispositivos USB HID, como un Mouse o un

Teclado. El canal A ha sido configurado para trabajar usando un protocolo SPI maestro (el FPGA funge como esclavo) mientras el canal B ha sido configurado para trabajar usando una interfaz SPI esclava (el FPGA funge como maestro). Las siguiente tabla resume la configuración de ambos canales.

SPI MAESTRO	CONFIGURACIÓN
SCK	3MHZ
MODO SPI	CPOL = 0, CPHA = 0
1 ^{er} Bit Transmitido	Bit más significativo
SPI_ESCLAVO	
SCK	HASTA 3 MHZ
MODO SPI	CPOL = 0, CPHA = 1

Las conexiones entre el FPGA y el USB Host se muestran en la siguiente tabla:

NOMBRE	PIN FTDI	PIN FPGA
SPI_M-SCK	15	E7
SPI_M-MOSI	16	A2
SPI_M-MISO	18	D5

Manual de Referencia de AVANXE Rev F – 19 Abril de 2016

NOMBRE	PIN FTDI	PIN FPGA
SPI_M-CS	19	C5
SPI_S-SCK	20	E8
SPI_S-MOSI	21	B5
SPI_S-MISO	22	A5
SPI_S-CS	23	E6

LEDs, Switches y Puertos de Expansión

AVANXE cuenta con 8 LEDs y 8 Switches para hacer comunicación digital básica. Los LEDs trabajan como salidas digitales mientras los Switches trabajan como entradas, también digitales.

Además, AVANXE cuenta con 42 pines de entrada salida de propósito general distribuidos en los puertos de expansión P4 y P6. Ambos puertos cuentan con salida de voltaje de 3.3 y 5 Volts así como referencia (GND).

La siguiente tabla muestra las conexiones entre el FPGA y los LEDs:

NOMBRE	PIN FPGA
D1	R1
D2	R2
D3	T4
D4	R5
D5	T5
D6	R7
D7	Т8
D8	Т9

La siguiente tabla muestra las conexiones entre el FPGA y los Switches:

NOMBRE	PIN FPGA
S2	M6
S 3	P4
S4	N5
S5	P5
S 6	т6
S 7	Τ7
S 8	R9
S 9	P9

Avanxe cuenta con un puerto de expansión de 20 pines compatible con protoboard, P4, y un puerto de 40 pines hembra compatible con Jumpers, P6.

Las siguientes tablas muestran las conexiones entre el FPGA y los puerto P4 y P6:

CONECTOR P4

NOMBRE	PIN EXPANSIÓN	PIN FPGA.
5V	1	-
3.3V	2	-
GND	3	-

Manual de Referencia de AVANXE Rev F - 19 Abril de 2016

Especificaciones www.intesc.mx

NOMBRE	PIN EXPANSIÓN	PIN FPGA
1034	4	D8
1035	5	D9
1036	6	A8
1037	7	F10
1038	8	C11
IO39/GCLK	9	B10
1040	10	A13
1041	11	E16
1042	12	G16
PSoC	13-20	NA*

* Ver sección del PSoC

CONECTOR P6

NOMBRE	PIN EXPNASIÓN	PIN FPGA
5V	1	-
5V	2	-
3.3V	3	-
3.3V	4	-
GND	5	-
GND	6	-
100	7	A6
101	8	C7
102	9	B8
IO3/GCLK	10	С9
104	11	F9
IO5/GCLK	12	A9
106	13	D11
IO7/GCLK	14	E10
108	15	C13

NOMBRE	PIN EXPNASIÓN	PIN FPGA
109	16	D12
1010	17	B12
1011	18	A11
1012	19	E15
1013	20	A14
1014	21	F16
1015	22	F15
1016	23	H16
1017	24	H14
IO18/GCLK	25	J16
1019	26	H15
1020	27	K16
1021	28	J14
1022	29	L16
1023	30	K15
1024	31	G12
1025	32	H13
1026	33	H11
1027	34	G11
1028	35	J13
1029	36	J11
1030	37	J12
1031	38	K14
1032	39	K11
1033	40	L14

En nuestro sitio web se pueden encontrar diferentes ejemplos de códigos de Hardware en VHDL para usar los diferentes recursos con los que

Manual de Referencia de AVANXE Rev F – 19 Abril de 2016

cuenta AVANXE. Los códigos son completamente gratuitos (leer licencia adjunta a cada módulo)**.

** Al adquirir AVANXE, el usuario acepta su responsabilidad en el uso de sus recursos e Intesc Electronics & Embedded no se hace responsable por el uso que se le de a este kit de desarrollo.

Manual de Referencia de AVANXE Rev F – 19 Abril de 2016

